为什么MySQL不推荐使用雪花 id 和 uuid 做主键?

测试

1:建表

要说明这个问题,我们首先来建立三张表,分别是user_auto_key,user_uuid,user_random_key,分别表示自动增长的主键,uuid作为主键,随机key作为主键,其它我们完全保持不变.根据控制变量法,我们只把每个表的主键使用不同的策略生成,而其他的字段完全一样,然后测试一下表的插入速度和查询速度。注:这里的随机key其实是指用雪花算法算出来的前后不红唇苦连续不重复无规律的id:一串18位长度的long值

create table user_key_auto(
	id int UNSIGNED not null auto_increment,
-- 用户uuid表
-- id VARCHAR(36) not null,
 
-- 随机主键  
-- id BIGINT(64) not null DEFAULT 0,
	user_id BIGINT(64) not NULL DEFAULT 0, 
	user_name VARCHAR(64) not NULL DEFAULT'',
	sex int(2) not NULL,
	address VARCHAR(255) not null DEFAULT '',
	city VARCHAR(64) not NULL DEFAULT'',
	email VARCHAR(64) not null DEFAULT '',
	state int(6) not NULL DEFAULT 0,
	PRIMARY KEY(id),
	key user_name_key(user_name) 
	)ENGINE=INNODB

2:使用spring的jdbcTemplate来实现测试:

技术框架:springboot+jdbcTemplate+junit+hutool,程序的原理就是连接自己的测试数据库,然后在相同的环境下写入同等数量的数据,来分析一下insert插入的时间来进行综合其效率,为了做到最真实的效果,所有的数据采用随机生成,比如名字、邮箱、地址都是随机生成。

package com.wyq.mysqldemo;
import cn.hutool.core.collection.CollectionUtil;
import com.wyq.mysqldemo.databaseobject.UserKeyAuto;
import com.wyq.mysqldemo.databaseobject.UserKeyRandom;
import com.wyq.mysqldemo.databaseobject.UserKeyUUID;
import com.wyq.mysqldemo.diffkeytest.AutoKeyTableService;
import com.wyq.mysqldemo.diffkeytest.RandomKeyTableService;
import com.wyq.mysqldemo.diffkeytest.UUIDKeyTableService;
import com.wyq.mysqldemo.util.JdbcTemplateService;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.util.StopWatch;
import java.util.List;
@SpringBootTest
class MysqlDemoApplicationTests {
    @Autowired
    private JdbcTemplateService jdbcTemplateService;
 
    @Autowired
    private AutoKeyTableService autoKeyTableService;
 
    @Autowired
    private UUIDKeyTableService uuidKeyTableService;
 
    @Autowired
    private RandomKeyTableService randomKeyTableService;
 
    @Test
    void testDBTime() {
 
        StopWatch stopwatch = new StopWatch("执行sql时间消耗");
 
        /**
         * auto_increment key任务
         */
        final String insertSql = "INSERT INTO user_key_auto(user_id,user_name,sex,address,city,email,state) VALUES(?,?,?,?,?,?,?)";
 
        List<UserKeyAuto> insertData = autoKeyTableService.getInsertData();
        stopwatch.start("自动生成key表任务开始");
        long start1 = System.currentTimeMillis();
        if (CollectionUtil.isNotEmpty(insertData)) {
            boolean insertResult = jdbcTemplateService.insert(insertSql, insertData, false);
            System.out.println(insertResult);
        }
        long end1 = System.currentTimeMillis();
        System.out.println("auto key消耗的时间:" + (end1 - start1));
 
        stopwatch.stop();
 
        /**
         * uudID的key
         */
        final String insertSql2 = "INSERT INTO user_uuid(id,user_id,user_name,sex,address,city,email,state) VALUES(?,?,?,?,?,?,?,?)";
 
        List<UserKeyUUID> insertData2 = uuidKeyTableService.getInsertData();
        stopwatch.start("UUID的key表任务开始");
        long begin = System.currentTimeMillis();
        if (CollectionUtil.isNotEmpty(insertData)) {
            boolean insertResult = jdbcTemplateService.insert(insertSql2, insertData2, true);
            System.out.println(insertResult);
        }
        long over = System.currentTimeMillis();
        System.out.println("UUID key消耗的时间:" + (over - begin));
 
        stopwatch.stop();
 
        /**
         * 随机的long值key
         */
        final String insertSql3 = "INSERT INTO user_random_key(id,user_id,user_name,sex,address,city,email,state) VALUES(?,?,?,?,?,?,?,?)";
        List<UserKeyRandom> insertData3 = randomKeyTableService.getInsertData();
        stopwatch.start("随机的long值key表任务开始");
        Long start = System.currentTimeMillis();
        if (CollectionUtil.isNotEmpty(insertData)) {
            boolean insertResult = jdbcTemplateService.insert(insertSql3, insertData3, true);
            System.out.println(insertResult);
        }
        Long end = System.currentTimeMillis();
        System.out.println("随机key任务消耗时间:" + (end - start));
        stopwatch.stop();
 
        String result = stopwatch.prettyPrint();
        System.out.println(result);
    }

3:程序写入结果

user_key_auto写入结果:

Image

user_random_key写入结果:

Image

user_uuid表写入结果:

Image

4:效率测试结果

Image

在已有数据量为130W的时候:我们再来测试一下插入10w数据,看看会有什么结果:

Image

可以看出在数据量100W左右的时候,uuid的插入效率垫底,并且在已有130W的数据时,uuid插入时间又直线下降。时间占用量总体可以打出的效率排名为:auto_key>random_key>uuid,uuid的效率最低,在数据量较大的情况下,效率直线下滑。

原因剖析

2.1:使用自增id的内部结构

Image

自增的主键的值是顺序的,所以Innodb把每一条记录都存储在一条记录的后面。当达到页面的最大填充因子时候(innodb默认的最大填充因子是页大小的15/16,会留出1/16的空间留作以后的 修改):

①下一条记录就会写入新的页中,一旦数据按照这种顺序的方式加载,主键页就会近乎于顺序的记录填满,提升了页面的最大填充率,不会有页的浪费

②新插入的行一定会在原有的最大数据行下一行,mysql定位和寻址很快,不会为计算新行的位置而做出额外的消耗

③减少了页分裂和碎片的产生

2.2:使用uuid的索引内部结构

Image

因为uuid相对顺序的自增id来说是毫无规律可言的,新行的值不一定要比之前的主键的值要大,所以innodb无法做到总是把新行插入到索引的最后,而是需要为新行寻找新的合适的位置从而来分配新的空间。这个过程需要做很多额外的操作,数据的毫无顺序会导致数据分布散乱,将会导致以下的问题:

①:写入的目标页很可能已经刷新到磁盘上并且从缓存上移除,或者还没有被加载到缓存中,innodb在插入之前不得不先找到并从磁盘读取目标页到内存中,这将导致大量的随机IO

:因为写入是乱序的,innodb不得不频繁的做页分裂操作,以便为新的行分配空间,页分裂导致移动大量的数据,一次插入最少需要修改三个页以上

:由于频繁的页分裂,页会变得稀疏并被不规则的填充,最终会导致数据会有碎片

在把随机值(uuid和雪花id)载入到聚簇索引(innodb默认的索引类型)以后,有时候会需要做一次OPTIMEIZE TABLE来重建表并优化页的填充,这将又需要一定的时间消耗。

结论:使用innodb应该尽可能的按主键的自增顺序插入,并且尽可能使用单调的增加的聚簇键的值来插入新行

2.3:使用自增id的缺点

那么使用自增的id就完全没有坏处了吗?并不是,自增id也会存在以下几点问题:

①:别人一旦爬取你的数据库,就可以根据数据库的自增id获取到你的业务增长信息,很容易分析出你的经营情况

②:对于高并发的负载,innodb在按主键进行插入的时候会造成明显的锁争用,主键的上界会成为争抢的热点,因为所有的插入都发生在这里,并发插入会导致间隙锁竞争

③:Auto_Increment锁机制会造成自增锁的抢夺,有一定的性能损失

附:Auto_increment的锁争抢问题,如果要改善需要调优innodb_autoinc_lock_mode的配置

链接